Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli
نویسندگان
چکیده
BACKGROUND Due to its abundance and low-price, glycerol has become an attractive carbon source for the industrial production of value-added fuels and chemicals. This work reports the engineering of E. coli for the efficient conversion of glycerol into L-lactic acid (L-lactate). RESULTS Escherichia coli strains have previously been metabolically engineered for the microaerobic production of D-lactic acid from glycerol in defined media by disrupting genes that minimize the synthesis of succinate, acetate, and ethanol, and also overexpressing the respiratory route of glycerol dissimilation (GlpK/GlpD). Here, further rounds of rationale design were performed on these strains for the homofermentative production of L-lactate, not normally produced in E. coli. Specifically, L-lactate production was enabled by: 1), replacing the native D-lactate specific dehydrogenase with Streptococcus bovis L-lactate dehydrogenase (L-LDH), 2) blocking the methylglyoxal bypass pathways to avoid the synthesis of a racemic mixture of D- and L-lactate and prevent the accumulation of toxic intermediate, methylglyoxal, and 3) the native aerobic L-lactate dehydrogenase was blocked to prevent the undesired utilization of L-lactate. The engineered strain produced 50 g/L of L-lactate from 56 g/L of crude glycerol at a yield 93% of the theoretical maximum and with high optical (99.9%) and chemical (97%) purity. CONCLUSIONS This study demonstrates the efficient conversion of glycerol to L-lactate, a microbial process that had not been reported in the literature prior to our work. The engineered biocatalysts produced L-lactate from crude glycerol in defined minimal salts medium at high chemical and optical purity.
منابع مشابه
Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol.
Given its availability and low price, glycerol has become an ideal feedstock for the production of fuels and chemicals. We recently reported the pathways mediating the metabolism of glycerol in Escherichia coli under anaerobic and microaerobic conditions. In this work, we engineer E. coli for the efficient conversion of glycerol to d-lactic acid (d-lactate), a negligible product of glycerol met...
متن کاملEfficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli.
Polylactic acid (PLA) is one of the promising biodegradable polymers, which has been produced in a rather complicated two-step process by first producing lactic acid by fermentation followed by ring opening polymerization of lactide, a cyclic dimer of lactic acid. Recently, we reported the production of PLA and its copolymers by direct fermentation of metabolically engineered Escherichia coli e...
متن کاملEnhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli.
1,2-Propanediol (1,2-PD) is a major commodity chemical currently derived from propylene. Previously, we have demonstrated the production of enantiomerically pure (R)-1,2-propanediol from glucose by an engineered E. coli expressing genes for NADH-linked glycerol dehydrogenase and methylglyoxal synthase. In this work, we investigate three methods to improve 1,2-PD in E. coli. First, we investigat...
متن کاملExpanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli
BACKGROUND The six-carbon circular non-proteinogenic compound L-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of L-pipecolic acid from glucose. RESULTS The metabolic pathway from L-lysine to L-pipecolic acid was constr...
متن کاملMetabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose
Modification of the Schizosaccharomyces pombe genome is often laborious, time consuming due to the lower efficiency of homologous recombination. Here, we constructed metabolically engineered S. pombe strains using a CRISPR-Cas9 system and also demonstrated D-lactic acid (D-LA) production from glucose and cellobiose. Genes encoding two separate pyruvate decarboxylases (PDCs), an L-lactic acid de...
متن کامل